State and explain the characteristics of vector product of two vectors.
$(1)$ $\vec{a} \times \vec{b}=\vec{b} \times \vec{a}$
The vector product of two vector is not commutative but $\vec{a} \times \vec{b}=-\vec{b} \times \vec{a}$ is opposite to each other
However $|\vec{a} \times \vec{b}|=|\vec{b} \times \vec{a}|$
$(2)$ Scalar product act behave like reflection (taking image in mirror) $x \rightarrow-x, y \rightarrow-y$ and $z \rightarrow$ $-z$.
In reflection occurrence all components changes sign mean positive vector becomes negative.
So, $\vec{a} \times \vec{b} \rightarrow(-\vec{a}) \times(-\vec{b})=\vec{a} \times \vec{b}$
Hence, in reflection sign is not change in resultant.
$(3)$ Vector product obeys distributive law :
$\vec{a} \times(\vec{b}+\vec{c})=\vec{a} \times \vec{b}+\vec{a} \times \vec{c}$
$(4)$ For two non-zero vectors $\vec{a} \times \vec{a}=\overrightarrow{0}$
where $\overrightarrow{0}$ is vector of zero modulus
Here $\vec{a} \times \vec{a} =(a)(a) \sin 0^{\circ} \hat{n}$ $=\overrightarrow{0}$
( $\because$ Angle between $\vec{a}$ and $\vec{a}$ is $0^{\circ}$ )
Hence, condition of parallel or anti parallel of two non-zero vectors is that its vector product should be zero.
$(5)$ If two non-zero vector is perpendicular, then
$\vec{a} \times \vec{b} =a b \sin 90^{\circ} \hat{n}$
$=a b \hat{n}$
where $\hat{n}$ is unit vector in direction of $\vec{a} \times \vec{b}$.
$(6)$ Vector product for unit vector of cartesian co-ordinate system.
A particle moves in the $x-y$ plane under the action of a force $\overrightarrow F $ such that the value of its linear momentum $(\overrightarrow P )$ at anytime t is ${P_x} = 2\cos t,\,{p_y} = 2\sin t.$ The angle $\theta $between $\overrightarrow F $ and $\overrightarrow P $ at a given time $t$. will be $\theta =$ ........... $^o$
If $\vec A = 2\hat i + \hat j - \hat k,\,\vec B = \hat i + 2\hat j + 3\hat k$ and $\vec C = 6\hat i - 2j - 6\hat k$ then the angle between $(\vec A + \vec B)$ and $\vec C$ wil be ....... $^o$
Which of the following is the unit vector perpendicular to $\overrightarrow A $ and $\overrightarrow B $
Show that the magnitude of a vector is equal to the square root of the scalar product of the vector with itself.